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Phases of  Holographic QCD: an early look

A speculation about baryogenesis



Phases of  QCD

According to Wikipedia

Baryon chemical potential



The trouble with baryons

Systems with baryon chemical potential are 
difficult to study on the lattice

The basic problem is the nonvanishing phase of  
the fermion determinant in the functional 
integral for the partition function

Ignoring the determinant (quenched 
approximation) gives incorrect phenomenology



More of  the QCD phase diagram
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FIG. 1. Phase diagram of QCD at finite isospin density.

At sufficiently high temperature the condensate (9)
melts (solid line in Fig. 1). For large µI , this critical
temperature is proportional to the BCS gap (10). There
are two phases which differ by symmetry: the high tem-
perature phase, where the explicit flavor U(1)L+R sym-
metry is restored, and the low-temperature phase, where
this symmetry is spontaneously broken. The phase tran-
sition is in the O(2) universality class [16]. The critical
temperature Tc vanishes at µI = mπ and is an increasing
function of µI in both regimes we studied: |µI | ! mρ

and |µI | " ΛQCD. Thus, it is likely that Tc(µI) is a
monotonous function of µI . In addition, at large µI ,
there is a first order deconfinement phase transition at
T ′

c much lower than Tc(µI). Since there is no phase tran-
sition at µI = 0 (for small mu,d) or at T = 0 (assuming
quark-hadron continuity), this first-order line must end
at some point A on the (T, µI) plane (Fig. 1). The exact
location of A should be determined by lattice calcula-
tions; one of the possibilities is drawn in Fig. 1.

The (µI , µB) phase diagram.—This phase diagram de-
serves a separate study. Here we shall only consider the
regime |µI | " µB (the opposite limit µB " |µI | was con-
sidered in Ref. [17]). Finite µB provides a mismatch be-
tween ū and d Fermi spheres, which makes the supercon-
ducting state unfavorable at some value of µB of order ∆.
It is known [18] that the destruction of this state occurs
through two phase transitions: one at µB slightly below
∆/

√
2 and another at µB = 0.754∆. The ground state

between the two phase transitions is the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) state [18], characterized by
a spatially modulated superfluid order parameter 〈ūγ5d〉
with a wavenumber of order 2µB. The FFLO state has
the same symmetries as the inhomogeneous pion con-
densation state which might form in electrically neutral
nuclear matter at high densities [19]. It is conceivable
that the two phases are actually one, i.e., continuously
connected on the (µI , µB) phase diagram.

The authors thank L. McLerran, J. Kogut, R. Pisarski,
and E. Shuryak for discussions, the DOE Institute for
Nuclear Theory at the University of Washington for its
hospitality, and K. Rajagopal for drawing their attention
to Ref. [18].
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Systems with Isospin

Neutron Stars (Low temp, Large isospin)

Quark-Gluon Plasma at RHIC,LHC 
(Higher temp, Smaller isospin)



QCD w/ Isospin Chemical Potential

III. PROPERTIES OF THE PION CONDENSATE PHASE

Since the pattern of chiral symmetry breaking is built into our holographic model, we

expect to reproduce predictions of the chiral Lagrangian, at least qualitatively. The pion

effective theory is determined by the action on the solution for the pion mode discussed in

the previous section, integrated over the extra dimension.

A. Decoupling the 5D gauge fields

The limit g5 → 0 provides the most direct comparison to previous results. In that limit

the fluctuations of the 5D gauge fields decouple from the pion physics. The corresponding 4D

effective theory is similar to the chiral Lagrangian with isospin chemical potential included

as a background for a 4D isospin gauge field, as in Ref. [8]. In terms of the unitary fields

Σ = exp

[
iπaσa

fπ

]
, (3.1)

the leading order chiral Lagrangian is

L4D =
f 2
π

4
Tr

(
∇νΣ∇νΣ†)+

m2
πf

2
π

4
Tr

(
Σ+ Σ†) , (3.2)

where ∇0Σ = ∂0Σ − iµI

2
[σ3,Σ] and ∇i = ∂i. Expanding to second order in the pion fields,

the Lagrangian takes the form,

L4D = 1

2
∂µπa∂µπa − 1

2
(m2

π − µ2
I) (π

1π1 + π2π2)

−1

2
m2

ππ
3π3 + µI (∂tπ1π2 − ∂tπ2π1) .

(3.3)

The instability when |µI | > mπ signals the phase transition to a pion condensate phase.

Estimation of the value of the condensate and related observables requires an extension

of the analysis to higher order in the pion fields, which we perform in the holographic

description.

By design, the analysis of the 5D model is similar to the chiral Lagrangian analysis above.

In the limit g5 → 0, we neglect couplings to the longitudinal gauge field ∂µφa. The action

(2.7) takes the form

Sg5=0 =

∫
d5x

√
−g

{
2X2

0

(
∂M (cos b)∂M (cos b) + ∂M (na sin b) ∂M (na sin b)

)

− 2µIa
−2∂0 (n

c sin b) εa3cna sin b+ µ2
Ia

−2 sin2 b ncndεc3eεd3e
}
, (3.4)
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Small          :  Can use Chiral Lagrangian 
(Son&Stephanov, 2000)

µI , T

: T = 0

this sign change (the u and d quarks play the role of
mutually conjugate quarks [2]), i.e,

τ1γ5Dγ5τ1 = D†. (3)

Instead of isospin τ1 in (3) one can also use τ2 (but not
τ3). Equation (3), in place of the now invalid Eq. (1),
ensures that detD ≥ 0. Repeating the derivation of the
QCD inequalities, by using (3) we find that the lightest
meson, or the condensate, must be in channels ψ̄iγ5τ1,2ψ,
i.e., a linear combination of π− ∼ ūγ5d and π+ ∼ d̄γ5u
states. Indeed, as shown below, in the two analytically
tractable regimes of small and large µI the lightest mode
is a massless Goldstone which is a linear combination of
ūγ5d and d̄γ5u.

Small isospin densities.—When µI is small compared
to the chiral scale (taken here to be mρ), we can use
chiral perturbation theory. For zero quark mass and
zero µI the pions are massless Goldstones of the spon-
taneously broken SU(2)L×SU(2)R chiral symmetry. If
the quarks have small equal masses, the symmetry is
only SU(2)L+R. The low-energy dynamics is governed
by the familiar chiral Lagrangian for the pion field Σ ∈
SU(2): L = 1

4
f2

πTr[∂µΣ∂µΣ† − 2m2
πReΣ], which contains

the pion decay constant fπ and vacuum pion mass mπ as
phenomenological parameters. The isospin chemical po-
tential further breaks SU(2)L+R down to U(1)L+R. Its
effect can be included to leading order in µI without
additional phenomenological parameters by promoting
SU(2)L×SU(2)R to a local gauge symmetry and view-
ing µI as the zeroth component of a gauge potential [6].
Gauge invariance thus fixes the way µI enters the chiral
Lagrangian:

Leff =
f2

π

4
Tr∇νΣ∇νΣ† −

m2
πf2

π

2
ReTrΣ, (4)

where the covariant derivative is defined as

∇0Σ = ∂0Σ −
µI

2
(τ3Σ − Στ3). (5)

By using (4), it is straightforward to determine vacuum
alignment of Σ as a function of µI and the spectrum
of excitations around the vacuum. We are interested in
negative µI , which favors neutrons over protons, as in
neutron stars. The results are very similar to two-color
QCD at finite baryon density [6]:

(i) For |µI | < mπ, the system is in the same ground
state as at µI = 0: Σ = 1. This is because the lowest
lying pion state costs a positive energy mπ−|µI | to excite,
which is impossible at zero temperature.

(ii) When |µI | exceeds mπ it is favorable to excite π−

quanta, which form a Bose condensate. In the language of
the effective theory, such a pion condensate is described
by a tilt of the chiral condensate Σ,

Σ = cosα + i(τ1 cosφ + τ2 sinφ) sin α ,

cosα = m2
π/µ2

I . (6)

The tilt angle α is determined by minimizing the vac-
uum energy. The energy is degenerate with respect to
the angle φ, corresponding to the spontaneous breaking
of the U(1)L+R symmetry generated by I3 in the La-
grangian (4). The ground state is a pion superfluid, with
one massless Goldstone mode. Since we start from a the-
ory with three pions, there are two massive modes which
can be identified with π0 and a linear combination of π+

and π−. At the condensation threshold, mπ0
= mπ and

the mass of the other mode is 2mπ, while for |µI | ' mπ

both masses approach |µI |.
The isospin density is found by differentiating the

ground state energy with respect to µI and is equal to:

nI = f2
πµI sin2 α = f2

πµI

(

1 −
m4

π

µ4
I

)

, |µI | > mπ . (7)

For |µI | just above the condensation threshold, |µI | −
mπ ( mπ, Eq. (7) reproduces the equation of state of
the dilute nonrelativistic pion gas [6].

It is also possible to find baryon masses, i.e., the en-
ergy cost of introducing a single baryon into the system.
The most interesting baryons are those with lowest en-
ergy and highest isospin, i.e. neutron n and ∆− isobar.
There are two effects of µI on the baryon masses. The
first comes from the isospin of the baryons, which effec-
tively reduces the neutron mass by 1

2
|µI | and the ∆−

mass by 3
2
|µI |. Alone, this effect would lead to the for-

mation of baryon/antibaryon Fermi surfaces, manifested
in nonvanishing zero-temperature baryon susceptibility
χB ≡ ∂nB/∂µB when µI > 2

3
m∆. However, long before

that, another effect turns on: the π−’s in the condensate
tend to repel the baryons, lifting up their masses. These
effects can be treated in the framework of the baryon
chiral perturbation theory [9], giving

mn = mN −
|µI |
2

cosα, m∆− = m∆ −
3|µI |

2
cosα (8)

in the approximation of nonrelativistic baryons. Equa-
tion (8) can be interpreted as follows: as a result of the
rotation (6) of the chiral condensate, the nucleon mass
eigenstate becomes a superposition of vacuum n and p
states. The expectation value of the isospin in this state
is proportional to cosα appearing in (8). With cosα
given in Eq.(6), we see that the two mentioned effects
cancel each other when mπ ( |µI | ( mρ. Thus the
baryon mass never drops to zero, and χB = 0 at zero
temperature in the region of applicability of the chiral
Lagrangian.

As one forces more pions into the condensate, the pions
are packed closer and their interaction becomes stronger.
When µI ∼ mρ, the chiral perturbation theory breaks
down. To find the equation of state in this regime, full
QCD has to be employed. As we have seen, this can be
done using present lattice techniques since the fermion
sign problem is not present at finite µI , similar to the
two-color QCD [5].

2

Chemical potential couples to isospin number density 
J (3)

0 = ψγ0τ3ψ

Σ = exp(2iπaτa/fπ)



QCD w/ Isospin Chemical Potential

Son-Stephanov ansatz:

this sign change (the u and d quarks play the role of
mutually conjugate quarks [2]), i.e,

τ1γ5Dγ5τ1 = D†. (3)

Instead of isospin τ1 in (3) one can also use τ2 (but not
τ3). Equation (3), in place of the now invalid Eq. (1),
ensures that detD ≥ 0. Repeating the derivation of the
QCD inequalities, by using (3) we find that the lightest
meson, or the condensate, must be in channels ψ̄iγ5τ1,2ψ,
i.e., a linear combination of π− ∼ ūγ5d and π+ ∼ d̄γ5u
states. Indeed, as shown below, in the two analytically
tractable regimes of small and large µI the lightest mode
is a massless Goldstone which is a linear combination of
ūγ5d and d̄γ5u.

Small isospin densities.—When µI is small compared
to the chiral scale (taken here to be mρ), we can use
chiral perturbation theory. For zero quark mass and
zero µI the pions are massless Goldstones of the spon-
taneously broken SU(2)L×SU(2)R chiral symmetry. If
the quarks have small equal masses, the symmetry is
only SU(2)L+R. The low-energy dynamics is governed
by the familiar chiral Lagrangian for the pion field Σ ∈
SU(2): L = 1

4
f2

πTr[∂µΣ∂µΣ† − 2m2
πReΣ], which contains

the pion decay constant fπ and vacuum pion mass mπ as
phenomenological parameters. The isospin chemical po-
tential further breaks SU(2)L+R down to U(1)L+R. Its
effect can be included to leading order in µI without
additional phenomenological parameters by promoting
SU(2)L×SU(2)R to a local gauge symmetry and view-
ing µI as the zeroth component of a gauge potential [6].
Gauge invariance thus fixes the way µI enters the chiral
Lagrangian:

Leff =
f2

π

4
Tr∇νΣ∇νΣ† −

m2
πf2

π

2
ReTrΣ, (4)

where the covariant derivative is defined as

∇0Σ = ∂0Σ −
µI

2
(τ3Σ − Στ3). (5)

By using (4), it is straightforward to determine vacuum
alignment of Σ as a function of µI and the spectrum
of excitations around the vacuum. We are interested in
negative µI , which favors neutrons over protons, as in
neutron stars. The results are very similar to two-color
QCD at finite baryon density [6]:

(i) For |µI | < mπ, the system is in the same ground
state as at µI = 0: Σ = 1. This is because the lowest
lying pion state costs a positive energy mπ−|µI | to excite,
which is impossible at zero temperature.

(ii) When |µI | exceeds mπ it is favorable to excite π−

quanta, which form a Bose condensate. In the language of
the effective theory, such a pion condensate is described
by a tilt of the chiral condensate Σ,

Σ = cosα + i(τ1 cosφ + τ2 sinφ) sin α ,

cosα = m2
π/µ2

I . (6)

The tilt angle α is determined by minimizing the vac-
uum energy. The energy is degenerate with respect to
the angle φ, corresponding to the spontaneous breaking
of the U(1)L+R symmetry generated by I3 in the La-
grangian (4). The ground state is a pion superfluid, with
one massless Goldstone mode. Since we start from a the-
ory with three pions, there are two massive modes which
can be identified with π0 and a linear combination of π+

and π−. At the condensation threshold, mπ0
= mπ and

the mass of the other mode is 2mπ, while for |µI | ' mπ

both masses approach |µI |.
The isospin density is found by differentiating the

ground state energy with respect to µI and is equal to:

nI = f2
πµI sin2 α = f2

πµI

(

1 −
m4

π

µ4
I

)

, |µI | > mπ . (7)

For |µI | just above the condensation threshold, |µI | −
mπ ( mπ, Eq. (7) reproduces the equation of state of
the dilute nonrelativistic pion gas [6].

It is also possible to find baryon masses, i.e., the en-
ergy cost of introducing a single baryon into the system.
The most interesting baryons are those with lowest en-
ergy and highest isospin, i.e. neutron n and ∆− isobar.
There are two effects of µI on the baryon masses. The
first comes from the isospin of the baryons, which effec-
tively reduces the neutron mass by 1

2
|µI | and the ∆−

mass by 3
2
|µI |. Alone, this effect would lead to the for-

mation of baryon/antibaryon Fermi surfaces, manifested
in nonvanishing zero-temperature baryon susceptibility
χB ≡ ∂nB/∂µB when µI > 2

3
m∆. However, long before

that, another effect turns on: the π−’s in the condensate
tend to repel the baryons, lifting up their masses. These
effects can be treated in the framework of the baryon
chiral perturbation theory [9], giving

mn = mN −
|µI |
2

cosα, m∆− = m∆ −
3|µI |

2
cosα (8)

in the approximation of nonrelativistic baryons. Equa-
tion (8) can be interpreted as follows: as a result of the
rotation (6) of the chiral condensate, the nucleon mass
eigenstate becomes a superposition of vacuum n and p
states. The expectation value of the isospin in this state
is proportional to cosα appearing in (8). With cosα
given in Eq.(6), we see that the two mentioned effects
cancel each other when mπ ( |µI | ( mρ. Thus the
baryon mass never drops to zero, and χB = 0 at zero
temperature in the region of applicability of the chiral
Lagrangian.

As one forces more pions into the condensate, the pions
are packed closer and their interaction becomes stronger.
When µI ∼ mρ, the chiral perturbation theory breaks
down. To find the equation of state in this regime, full
QCD has to be employed. As we have seen, this can be
done using present lattice techniques since the fermion
sign problem is not present at finite µI , similar to the
two-color QCD [5].

2
Results:           if µI > mπ

Phase transition is second order

c2
s > 1/3

speed of  sound

Σ �= 1



The Sound Bound

Cherman,Cohen,Nellore; 
Hohler,Stephanov

High Temp systems are nearly conformal

Tµ
µ = 0 → � = 3p

Energy
Density

Pressure

Sound Bound Conjecture: All systems approach 
conformal limit from below:               at high T.

c2
s = dp

d�

c2
s < 1/3



Holographic QCD
Top-Down and Bottom-Up

Bottom-Up AdS/QCD:

Model tower of resonances as Kaluza-Klein modes in an extra
dimension (Son,Stephanov’04)
Model pattern of chiral symmetry breaking by analogy with AdS/CFT
correspondence

Optional: Specify details of model (geometry of extra dimension,
couplings) by matching to UV as best possible
(e.g. Brodsky,De Teramond; JE et al.; Da Rold,Pomarol)

AdS5

Josh Erlich (College of William & Mary) Recent Developments in AdS/QCD September 3, 2008 4 / 24



Top-Down AdS/QCD
Top-Down and Bottom-Up

Top-Down AdS/QCD:

String theory brane configuration → gauge theory similar to QCD

(e.g. Kruczenski et al.; Antonyan,Harvey,Kutasov; Sakai,Sugimoto)

At large-N, theory has weakly-coupled dual description via the

AdS/CFT correspondence (Maldacena)

The Sakai-Sugimoto Model

D8D8

 chiral
fermions 

confinement chiral symmetry
breaking

D4
D8D8

Josh Erlich (College of William & Mary) Recent Developments in AdS/QCD September 3, 2008 3 / 24



Top-Down vs. Bottom-Up
Top-Down vs. Bottom-Up

Top-Down AdS/QCD:

Advantage: Both
descriptions of theory are
relatively well
understood, duality is
exact.

Disadvantage: QCD with
fundamental flavors does
not have weakly-coupled
AdS/CFT dual, so far
even at large-N.

Bottom-Up AdS/QCD:

Advantage: Freedom to
match model to aspects
of QCD.

Disadvantage: Some
features of model
disagree with QCD
(analogous to large-N
limit).

Josh Erlich (College of William & Mary) Recent Developments in AdS/QCD September 3, 2008 5 / 24



The Hard Wall ModelBuilding a Bottom-Up AdS/QCD Model

Step 1: Choose 5D gauge group and geometry.

Tower of vector mesons are identified with tower of Kaluza-Klein
gauge bosons.

SU(2) isospin → 5D SU(2) gauge theory
Conformal in the UV → Anti-de Sitter space near its boundary

Can choose geometry by matching spectrum to Pade approx of SU(2)
current-current correlator in deep Euclidean regime −q2 � m2

ρ.

Result: geometry = slice of AdS space
(Shifman; JE,Kribs,Low; Falkowski,Perez-Victoria).

Josh Erlich (College of William & Mary) Recent Developments in AdS/QCD September 3, 2008 6 / 24
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Conformality at Low Energies?
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FIG. 1: (color online) αs,g1
(Q)/π obtained from JLab (triangles and open stars) and world (open

square) data on the Bjorken sum. Also shown are αs,τ (Q)/π from OPAL data, the GLS sum result

from the CCFR collaboration (stars) and αs,g1
(Q)/π from the Bjorken (band) and GDH (dashed

line) sum rules.

We fit the data using a functional form that resembles the pQCD evolution equation for

αs, with an additional term mg(Q) that prevents αfit
s,g1

from diverging when Q2 → Λ2 and

another term n(Q) that forces αfit
s,g1

to π when Q2 → 0. Note that the latter constraint is a

consequence of both the generalized GDH and Bjorken sum rules [5]. Our fit form is:

αfit
s,g1

=
γn(Q)

log(
Q2+m2

g(Q)

Λ2 )
(2)

where γ = 4/β0 = 12/(33 − 8), n(Q) = π(1 + [ γ
log(m2/Λ2)(1+Q/Λ)−γ + (bQ)c]−1) and mg(Q) =

Brodsky and collaborators motivate Anti-de Sitter space from approximate
conformality of QCD at low energies.  e.g. Brodsky and Shrock ’08

From CLAS (Deur et al.) ’08



Modeling Chiral SymmetryBuilding a Bottom-Up AdS/QCD Model

To include the full chiral symmetry, not just the vector subgroup,

SU(2)×SU(2) chiral symmetry → SU(2)×SU(2) 5D gauge group

Additional tower of gauge bosons → tower of axial-vector mesons.
(5D parity → 4D parity)
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Spectrum includes vectors, axial vectors and pseudoscalars.



...and Chiral Symmetry Breaking
Building a Bottom-Up AdS/QCD Model

Step 2: Include pattern of chiral symmetry breaking

Hint from AdS/CFT: 4D operator → 5D field

qiqj → Scalar fields Xij , bifundamental under SU(2)×SU(2)

Background profile for Xij :

Non-normalizable mode → source L4D ⊃ mij qiqj

Normalizable mode → VEV �qiqj�

The scalar field background explicitly and spontaneously breaks the chiral

symmetry.
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More details of  the Hard Wall Model
Building a Bottom-Up AdS/QCD Model

For definiteness, we need to choose 5D mass of scalar field.

AdS/CFT:
✞
✝

☎
✆m2

X = ∆qq(∆qq − 4) in units of AdS curvature.

In the UV, ∆qq = 3, so we choose
✞
✝

☎
✆m2

X = −3 .

Note: This choice is made for definiteness, but is not necessary.

Josh Erlich (College of William & Mary) Recent Developments in AdS/QCD September 3, 2008 9 / 24



Summary of  the Hard Wall Model
Building a Bottom-Up AdS/QCD Model

In summary, the model is:

SU(2)×SU(2) gauge theory in slice of AdS5 with background
bifundamental scalar field.

S =

�
d5x

√
−g

�
− 1

2g2
5

Tr (LMNLMN + RMNRMN) + Tr(|DMX |2 − 3|X |2)
�

ds2 =
1

z2

�
dxµdxµ − dz2

�
, � < z < zIR

X0(x , z) =
mq

2
z +

�qq�
2

z3

Model parameters:
✞✝ ☎✆g5, mq, �qq�, zIR

Josh Erlich (College of William & Mary) Recent Developments in AdS/QCD September 3, 2008 10 / 24(JE,Katz,Son,Stephanov; DaRold,Pomarol)

a(z) ≡ 1/z2



Matching to UVMatching to UV

In the deep Euclidean regime −q2 � m2
ρ, perturbative QCD gives

i

�
d4x e iq·x�Ja

µ(x)Jb
ν (0)� =

�
qµqν − gµνq

2
�
δab N

24π2
log(q2)

We can express the correlator as a sum over resonances:

i

�
d4x e iq·x�Ja

µ(x)Jb
ν (0)� =

� F 2
n

q2 −m2
n

�
gµν −

qµqν

m2
n

�
δab

Agreement of these expressions in the deep Euclidean regime is a
Weinberg sum rule.
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mn = nth Kaluza-Klein mass



Matching to UV

Relation with AdS/CFT

We did not refer to the AdS/CFT correspondence in the calculation of the

current-current correlator.

However, the calculation via AdS/CFT dictionary gives same result.

∂z

�
1

z
∂zV (q, z)

�
+

q2

z
V (q, z) = 0.

V (q, �) = 1, ∂zV (q, z)

���
z=zm

= 0

i

�
d4x e iq·x�Ja

µ(x)Jb
ν (0)� =

� �
qµqν − gµνq

2
�
δab ∂zV (q, z)

g2
5 q2 z

����
z=�

Matching 5D calculation w/ 4D perturbative calculation in UV →✞
✝

☎
✆g2

5 = 12π2/N .

Note: this choice is made for definiteness, but is not necessary.
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We will use              in examples. g5 = 2π



Results of  Hard Wall Model

(with additional strange quark mass parameter)

From Abdidin and Carlson ʼ09



Isospin Chem Pot in the Hard Wall Model

transition is first order in the hard-wall model unless the 5D gauge coupling vanishes. The

speed of sound cs at high temperatures was conjectured to satisfy a “sound bound” c2s < 1/3

[38, 39], where c2s = 1/3 is the conformal limit. Fluctuations in the condensate at zero

temperature violate the “sound bound,” except near the phase boundary and then only if

the 5D gauge coupling is small enough. Violation of the sound bound at low temperature

is not unusual [39] and has also been observed in certain D-brane systems [34] and in a

holographic model describing matter at a Lifshitz point [40].

To describe systems at nonvanishing temperature, extra-dimensional models are modified

to include a black-hole horizon. However, we will focus on the zero-temperature phase of

isospin matter, which corresponds to the original hard-wall background without a black-

hole horizon. For simplicity we do not include chemical potentials except for isospin, so our

analysis provides only a narrow cross section of the phase structure of the model. Extensions

of these results to nonvanishing temperature and baryon chemical potential, and to include

strange quarks and Kaon condensation [41], may shed light on the phases of matter in

neutron stars and other extreme environments.

II. HOLOGRAPHIC PION CONDENSATION

The action for the 5D hard-wall model with chiral symmetry is given by [23, 24],

S =

∫
d5x

√
−gTr

{
|DX|2 + 3 |X|2 −

1

4g25

(
F 2
L + F 2

R

)}
, (2.1)

where DMX = ∂MX−iLMX+iXRM , LM = La
MT a and FL

MN = ∂MLN−∂MLN−i [LM , LN ]

(similarly for R), and we normalize the gauge kinetic term as in [23]. The spacetime in the

hard-wall model is a slice of AdS5:

ds = a(z)2
(
ηµνdx

µdxν − dz2
)
, ε < z ≤ zm,

where a(z) = 1/z in units of the AdS curvature scale, and ηµν is the 4D Minkowski metric

with mostly negative signature. Greek indices range from 0 to 3, and capital Latin indices

from 0 to 4, with x4 also denoted by z. The scalar fields X transform in the bifundamental

representation of the SU(2)L×SU(2)R gauge invariance.

Chiral symmetry breaking is provided by the background solution to the X field equation

of motion,

X0(z) =
1

2

(
mqz + σz3

)
≡

1

2
v, (2.2)

4
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Scalar field background
where mq is the quark mass matrix responsible for sourcing σ, the chiral condensate. The

bulk vector gauge field V a
M = 1/2(La

M +Ra
M ) is dual to the isospin vector current operator.

We work in the gauge La
z = Ra

z = 0. The linearized equations of motion for the transverse

part of V a
µ are

∂z

(
1

z
∂zV

a
µ

)
−

1

z
∂α∂

αV a
µ = 0. (2.3)

The background solutions for V 3
0 are of the form

V 3
0 (z) = c1 +

c2
2
z2, (2.4)

where the coefficient of the non-normalizable mode, c1, is identified with the chemical po-

tential for the third component of isospin µI ; and c2 is proportional to the spontaneously

generated background isospin number density, which we assume to vanish. Hence, the back-

ground gauge field is uniform,

V 3
0 = µI . (2.5)

The pions are identified with solutions to the linearized coupled equations of motion for

the Goldstone modes in the scalar fields X , which mix with the longitudinal part of the

axial vector field Aa
µ = (La

µ −Ra
µ)/2 ≡ ∂µφa. We parametrize the Goldstone modes by fields

πa such that,

X = X0 exp [i2π
aT a]

= X0 (cos b+ i (naσa) sin b) ,
(2.6)

where b =
√
πcπc and nc = b−1πc. The action (2.1) takes the form:

S =

∫
d5x

√
−g

{
2X2

0

(
∂M(cos b)∂M (cos b) + ∂M (na sin b) ∂M (na sin b)

− 2µIa
−2∂0 (n

c sin b) εa3cna sin b− 2a−2∂µ (n
a sin b) cos b ∂µφa

+ 2a−2∂µ(cos b)n
a sin b ∂µφa + 2µIa

−2 cos b εa3cna sin b ∂0φ
c

+µ2
Ia

−2 sin2 b ncndεc3eεd3e + a−2 cos2 b ∂µφ
a∂µφa + a−2 sin2 b na∂µφ

anc∂µφc
)

−a−4 1

2g25

[
µ2
I

(
∂iφ

1∂iφ1 + ∂iφ
2∂iφ2

)
− ∂z∂µφ

a∂z∂
µφa +O

(
(Aa

µ)
4
)]}

, (2.7)

where contractions of Greek indices are done with ηµν and those of capital Latin indices are

done using the full metric gMN .
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Vector combination of  gauge fields
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Linearized equation of  Motion
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Background Solution

Source for J (3)
0 → c1 = µI



Pion Condensation in the Hard Wall Model

Goldstone Modes
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For simplicity, temporarily decouple the gauge field 
fluctuations: g5 → 0

Linearized equations of  motion:
where b =

√
πcπc and nc = b−1πc as before. The linearized equations of motion for the pion

fields are now,

−m2
ππ

0,± =
1

v2a3
∂z

(
v2a3∂zπ

0,±) . (3.5)

The condensate is a static configuration rotationally invariant in x1, x2, x3. The action on

such configurations gives the condensate effective potential,

Veff,g5=0 =

∫
dz v(z)2a(z)3

(
1

2

(
db

dz

)2

+
1

2
sin2 b

(
dnc

dz

)2

−
µ2
I

2
sin2 b ncnd

(
δcd − δc3δd3

))
.

(3.6)

The effective potential increases with |dnc/dz|, so dnc/dz = 0 in the ground state. The profile

of b(z) is determined from the solution to the equations of motion for the pion Kaluza-Klein

mode. Expanding to fourth order in the pion fields,

Veff,g5=0 =

∫ zm

ε

dz v2/z3
1

2

((
dπ

dz

)2

− µ2
I

(
π(z)2 −

π(z)4

3
+ · · ·

)
ncnd

(
δcd − δc3δd3

)
)

=

∫ zm

ε

dz v2/z3
1

2

(
m2

ππ(z)
2 − µ2

I n
cnd

(
δcd − δc3δd3

)(
π(z)2 −

π(z)4

3
+ · · ·

))
, (3.7)

where we used the linearized equation of motion (3.5) in the last line.

For |µI | > mπ it is energetically favorable to turn on the charged pions. The pion field is

normalized by its kinetic term in the effective 4D theory, so we define πa(z) = π̃(z) πa such

that ∫ zm

ε

dz v2a3 π̃(z)2 = 1, (3.8)

and πa is the pion condensate 〈πa〉.

Minimizing Veff expanded to O ((πa)4), we find that the transition is smooth (second

order), and for µ ! mπ we obtain,

π+π− =
3

4η̃

(
1−

m2
π

µ2

)
, (3.9)

where η̃ =
∫ zm
ε

dz v2a3π̃(z)4. We then find,

Veff,g5=0(π
±) = −

3

8η̃
µ2
I

(
1−

m2
π

µ2
I

)2

. (3.10)

The isospin number density is

nI = −
∂Veff

∂µI

=
3µI

4η̃

(
1−

m4
π

µ4
I

)
. (3.11)
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Energy in pion configuration:
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To express results in terms of  observables, we compare
with the holographic calculation of     .

Define the axial gauge field   

fπ

where mq is the quark mass matrix responsible for sourcing σ, the chiral condensate. The

bulk vector gauge field V a
M = 1/2(La

M +Ra
M ) is dual to the isospin vector current operator.

We work in the gauge La
z = Ra

z = 0. The linearized equations of motion for the transverse

part of V a
µ are

∂z

(
1

z
∂zV

a
µ

)
−

1

z
∂α∂

αV a
µ = 0. (2.3)

The background solutions for V 3
0 are of the form

V 3
0 (z) = c1 +

c2
2
z2, (2.4)

where the coefficient of the non-normalizable mode, c1, is identified with the chemical po-

tential for the third component of isospin µI ; and c2 is proportional to the spontaneously

generated background isospin number density, which we assume to vanish. Hence, the back-

ground gauge field is uniform,

V 3
0 = µI . (2.5)

The pions are identified with solutions to the linearized coupled equations of motion for

the Goldstone modes in the scalar fields X , which mix with the longitudinal part of the

axial vector field Aa
µ = (La

µ −Ra
µ)/2 ≡ ∂µφa. We parametrize the Goldstone modes by fields

πa such that,

X = X0 exp [i2π
aT a]

= X0 (cos b+ i (naσa) sin b) ,
(2.6)

where b =
√
πcπc and nc = b−1πc. The action (2.1) takes the form:

S =

∫
d5x

√
−g

{
2X2

0

(
∂M(cos b)∂M (cos b) + ∂M (na sin b) ∂M (na sin b)

− 2µIa
−2∂0 (n

c sin b) εa3cna sin b− 2a−2∂µ (n
a sin b) cos b ∂µφa

+ 2a−2∂µ(cos b)n
a sin b ∂µφa + 2µIa

−2 cos b εa3cna sin b ∂0φ
c

+µ2
Ia

−2 sin2 b ncndεc3eεd3e + a−2 cos2 b ∂µφ
a∂µφa + a−2 sin2 b na∂µφ

anc∂µφc
)

−a−4 1

2g25

[
µ2
I

(
∂iφ

1∂iφ1 + ∂iφ
2∂iφ2

)
− ∂z∂µφ

a∂z∂
µφa +O

(
(Aa

µ)
4
)]}

, (2.7)

where contractions of Greek indices are done with ηµν and those of capital Latin indices are

done using the full metric gMN .

5

We can express η̃ in terms of f 2
π in this model by the AdS/CFT determination of fπ.

The correlator of a product of axial currents has a pion pole at zero momentum transfer

in the chiral limit, with residue equal to f 2
π . The AdS/CFT correspondence determines the

correlation function in terms of a bulk-to-boundary propagator which solves the linearized

equations of motion for the transverse part of the axial vector field. For more details in the

context of the present model, see Refs. [23, 24]. We summarize the results here.

The linearized equation of motion for the transverse part of the axial vector field Aa
µ(q, z)

is given by, [
∂z

(
a∂zA

a
µ

)
+

q2

z
Aa

µ − v2a3g25A
a
µ

]

⊥
= 0. (3.12)
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Approximating the pion wavefunction as uniform:
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FIG. 1: Pion eigenfunction with mq = 4.25 MeV, σ = (263 MeV)3, and zm = 1/(323 Mev).

σ = (263 MeV)3 we find physical values mπ=140 MeV and fπ=92 MeV in the g5 → 0 limit.

With these values of the parameters, we find

η̃ =

∫ zm

ε

dz v(z)2a(z)3π̃(z)4 = 1/(91 MeV)2, (3.17)

which is approximately 1/f 2
π as expected. Note that the Gell-Mann-Oakes-Renner relation

is approximately satisfied, m2
πf

2
π/(2mqσ) = 1.07 ≈ 1.

We now have the holographic prediction of the equation of state:

nI ≈
3

4
f 2
πµI

(
1−

m4
π

µ4
I

)
. (3.18)

For comparison, the corresponding prediction from the 4D chiral Lagrangian (3.2) is [8]

n4D = f 2
πµI

(
1−

m4
π

µ4
I

)
, (3.19)

which differs from the holographic prediction by an overall factor of 4/3. This overall

factor drops out of the ratio of pressure to energy density and the speed of sound at zero

temperature. The number densities are plotted in Figure 2. The model is not expected to

be valid for µI ! mρ ≈ 5.5mπ, but we plot the model prediction here and below over the

entire range of µI .

The pressure p and energy density ε in the pion condensate medium are determined by

nI(µI) [8, 13]:

p(µI) =

∫ µI

mπ

nI dµ̃ =
3f 2

π (µ
2
I −m2

π)
2

8µ2
I

, (3.20)

ε(µI) =

∫ nI

0

µI dñ =
3f 2

π

8µ2
I

(
µ2
I −m2

π

) (
µ2
I + 3m2

π

)
. (3.21)
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Agrees with chiral Lagrangian
except for factor of  3/4.
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FIG. 1: Pion eigenfunction with mq = 4.25 MeV, σ = (263 MeV)3, and zm = 1/(323 Mev).
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Pressure and energy density
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FIG. 2: Isospin number density. The bottom red curve is the prediction of the hard-wall model

with mq = 4.25 MeV, σ = (263 MeV)3 and zm = 1/(323 MeV). The top blue curve is the result

from Ref. [8] quoted in (3.19).

This gives
p

ε
=

µ2
I −m2

π

µ2
I + 3m2

π

, (3.22)

and

c2s =
dp

dε
=

µ4
I −m4

π

µ4
I + 3m4

π

. (3.23)

The speed of sound violates the sound bound c2s < 1/3 except near the phase transition

boundary at µI = mπ.

B. Pion condensation with dynamical 5D gauge bosons

Having understood how the g5 → 0 limit of holographic QCD reproduces the qualitative

behavior of isospin matter at low temperature expected from the chiral Lagrangian, we

now consider the more general situation including couplings to the 5D gauge fields. In the

calculations below we will take g5 = 2π, which makes the holographic prediction of the

vector current polarization at large momentum transfer agree with perturbative three-color

QCD [23, 24] .

We first construct an approximate solution to (2.9) as an expansion in mπ, as in Ref. [23].

Combining the first two equations of (2.9) we get

m2
π∂zφ

0 = v2a2g25∂zπ
0. (3.24)
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Speed of  Sound

Turning the 5D gauge coupling back on gives 
qualitatively different results:
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FIG. 4: Speed of Sound. The upper red curve is the perturbative prediction of the hard-wall model

for the speed of sound with mq = 2.26 MeV, σ = (333 MeV)3, and zm = 1/(323 MeV). This set

of parameters gives the value α = 3.66 in (3.33). The bottom blue curve is the prediction based

on (3.19). The top and bottom dashed lines represent the speed of light and the conformal limit

c2s = 1/3.

where for this analysis α1 and α2 are arbitrary parameters. Once again we take the static

part of the Lagrangian to get an expression for the effective potential. Defining Σ = cos b+

i (naσa) sin b, we have

Veff(cos b) = −
µ2
If

2
π

2

(
1− cos2 b

) (
1− n3n3

)
−m2

πf
2
π cos b−a1

µ4
If

2
π

4

(
1− cos2 b

)2 (
1− n3n3

)2
,

(4.2)

where a1 ≡ 16

f2
π

(α1+α2). At the minimum of Veff , n3 = 0, and we find a region of a1 parameter

space where the phase transition is first order. That is, as a1 increases past a critical value

acrit1 = 1/(2m2
π), the phase transition changes from second to first order. This is illustrated

in Figure 5 . However, f 2
πa

crit
1 = 0.22 is much larger than the typical low energy coefficients

in the chiral Lagrangian inferred by experiment (l1(mπ) = (−4 ± 6) × 10−3, l2(mπ) =

(9.1± 0.2)× 10−3) [42, 43].

V. CONCLUSIONS

We have studied pion condensation at zero temperature and finite isospin chemical poten-

tial in a hard-wall model of holographic QCD with chiral symmetry breaking and massive

pions. At the critical point µI = mπ the pion condenses, and our perturbative analysis
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Order of  the pion condensate transition
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FIG. 3: Isospin number density. The top red curve is the perturbative prediction of the hard-

wall model with parameters fit to mρ, mπ and fπ: mq = 2.26 MeV, σ = (333 MeV)3, and

zm = 1/(323 MeV). This set of parameters gives α = 3.66 and η = 3.60, in (3.31). The bottom

blue curve is the result from Ref. [8] given in (3.19).

and

c2s =
α2µ4

I −m4
π

α2µ4
I + 3m4

π

. (3.33)

This is plotted next to the chiral Lagrangian prediction in Figure 4. Note that the speed

of sound exceeds the sound bound c2s = 1/3 throughout the pion condensate phase at zero

temperature.

IV. A COMMENT ON THE CHIRAL LAGRANGIAN

Leading order chiral perturbation theory predicts that the transition to the pion con-

densate phase is second order. We have learned that gauging the chiral symmetry in the

holographic model qualitatively modifies predictions for pion condensation at zero tempera-

ture. The transition becomes first order, and the medium becomes stiff immediately beyond

the phase boundary. Including higher derivative terms in the chiral Lagrangian can have

similar consequences, as we will now demonstrate. Consider the Lagrangian

L = f2
π

4
Tr

[
DµΣDµΣ†

]
+ m2

πf
2
π

4
Tr

[
Σ+ Σ†

]
+ α1

(
Tr

[
DµΣDµΣ†

])2

+α2Tr
[
DµΣDνΣ†

]
Tr

[
DµΣDνΣ†

]
,

(4.1)
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g5 = 2π

g5 = 0

Except in the limit           , the isospin density is
discontinuous at the transition

g5 = 0

Holographic QCD predicts a first order transition.



Why the unusual behavior?

Chiral perturbation theory, the Nambu-Jona-Lasinio 
model, and lattice calculations all indicate that the pion 
condensation transition is second order.
(Son,Stephanov; Splittorff  et al.; Toublan,Kogut; 
He,Zhuang; Abuki et al.; de Forcrand et al; Detmold et al.)

If  holographic QCD properly includes chiral symmetry 
breaking, it should agree with chiPT.

There is another difference from chiPT: 
the GOR relation is modified differently if  the chiral 
condensate is made (unphysically) complex (R. Wilcox).



Why the unusual behavior?

Perhaps we have misidentified the pion.

X = 1
2 (mqz + σz3) exp [i2πaT a]

Goldstone fluctuations of  both the condensate and the quark 
mass?

Looks like mixing of  the pions with the longitudinal W, Z
       Correct quantum numbers, but wrong physics.



A comparison with chiPT
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FIG. 3: Isospin number density. The top red curve is the perturbative prediction of the hard-

wall model with parameters fit to mρ, mπ and fπ: mq = 2.26 MeV, σ = (333 MeV)3, and

zm = 1/(323 MeV). This set of parameters gives α = 3.66 and η = 3.60, in (3.31). The bottom

blue curve is the result from Ref. [8] given in (3.19).

and

c2s =
α2µ4

I −m4
π

α2µ4
I + 3m4

π

. (3.33)

This is plotted next to the chiral Lagrangian prediction in Figure 4. Note that the speed

of sound exceeds the sound bound c2s = 1/3 throughout the pion condensate phase at zero

temperature.

IV. A COMMENT ON THE CHIRAL LAGRANGIAN

Leading order chiral perturbation theory predicts that the transition to the pion con-

densate phase is second order. We have learned that gauging the chiral symmetry in the

holographic model qualitatively modifies predictions for pion condensation at zero tempera-

ture. The transition becomes first order, and the medium becomes stiff immediately beyond

the phase boundary. Including higher derivative terms in the chiral Lagrangian can have

similar consequences, as we will now demonstrate. Consider the Lagrangian
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π
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π
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FIG. 4: Speed of Sound. The upper red curve is the perturbative prediction of the hard-wall model

for the speed of sound with mq = 2.26 MeV, σ = (333 MeV)3, and zm = 1/(323 MeV). This set

of parameters gives the value α = 3.66 in (3.33). The bottom blue curve is the prediction based

on (3.19). The top and bottom dashed lines represent the speed of light and the conformal limit

c2s = 1/3.

where for this analysis α1 and α2 are arbitrary parameters. Once again we take the static

part of the Lagrangian to get an expression for the effective potential. Defining Σ = cos b+

i (naσa) sin b, we have

Veff(cos b) = −
µ2
If

2
π

2

(
1− cos2 b

) (
1− n3n3

)
−m2

πf
2
π cos b−a1

µ4
If

2
π

4

(
1− cos2 b

)2 (
1− n3n3

)2
,

(4.2)

where a1 ≡ 16

f2
π

(α1+α2). At the minimum of Veff , n3 = 0, and we find a region of a1 parameter

space where the phase transition is first order. That is, as a1 increases past a critical value

acrit1 = 1/(2m2
π), the phase transition changes from second to first order. This is illustrated

in Figure 5 . However, f 2
πa

crit
1 = 0.22 is much larger than the typical low energy coefficients

in the chiral Lagrangian inferred by experiment (l1(mπ) = (−4 ± 6) × 10−3, l2(mπ) =

(9.1± 0.2)× 10−3) [42, 43].

V. CONCLUSIONS

We have studied pion condensation at zero temperature and finite isospin chemical poten-

tial in a hard-wall model of holographic QCD with chiral symmetry breaking and massive

pions. At the critical point µI = mπ the pion condenses, and our perturbative analysis
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FIG. 5: Each plot shows the phase transition for a different value of the a1 parameter. The critical

value of µI for pion condensation depends on a1. The three curves shown in each plot correspond

to µI < µc, µI = µc, and µI > µc (top, middle, and bottom curves, respectively). Plot (a) shows

the transition for a1 less than the critical value. Plot (b) is with a1 the critical value, while a1 of

(c) is larger. These plots assumed mπ = 139 MeV and fπ = 92.4 MeV.

suggests that the condensate creates a stiff medium approaching the Zel’dovich equation of

state p = ε. Sound propagation exceeds the conformal sound bound c2s = 1/3, except near

the phase transition boundary if the 5D gauge coupling is small enough. The low-energy

effective theory for pions as derived from the hard-wall model indicates that the transition

from the hadronic phase to the condensate phase is first order, except in the limit of van-

ishing 5D gauge coupling. This is in contrast to leading order chiral perturbation theory,

which predicts a second order transition [8], and lattice simulations which also seem to be

consistent with a second order transition [14]. We have shown that even in chiral pertur-

bation theory the transition can become first order if higher derivative terms in the chiral
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f2
πa1 > 0.22For               , the transition

is first order.

(Expt:                  )f2
πa1 ∼ 10−3



Vector Meson Condensation

Domokos and Harvey ’07

Anomalous symmetries lead to Chern-Simons
interactions in the 5D model.

Anomalous baryon number leads to a coupling 
between the rho and a :1

2

find the scalar background

X0(z) =

(

1

2
Mz +

1

2
Σz3

)

≡
v(z)

2
1 (4)

where the coefficient M of the non-normalizable term is
proportional to the quark mass matrix, and Σ is the q̄q
expectation value. We take both M and Σ to be diagonal:
M ≡ mq1 and Σ ≡ σ1. As shown in [6, 7], we can
fix the five-dimensional coupling g5 by comparison with
the vector current two-point function in QCD at large
Euclidean momentum. This leads to the identification

g2
5 =

12π2

Nc
. (5)

The model is thus defined by three parameters: zm, mq

and σ. Note that including the U(1) gauge fields and
Chern-Simons coupling does not mandate the addition
of any new parameters. We use zm = 1/(346 MeV),
mq = 2.3 MeV and σ = (308 MeV)3, which correspond
to values found through a global fit to seven observables
(Model B) in [6].

A background with a static, constant quark density is
described by a classical solution to the equation of motion
for the time component of the U(1) vector gauge field V̂µ,
which is dual to the quark number current. Solving the
V̂0 equation of motion at zero four-momentum yields

V̂0(z) = A +
1

2
Bz2 . (6)

By the general philosophy of AdS/CFT, the coefficient
of the non-normalizable term, A, is proportional to the
coefficient with which the operator dual to V̂0 enters the
gauge theory Lagrangian. Since V̂µ is dual to the quark
number current, A must be proportional to the quark
chemical potential. Meanwhile, the coefficient of the nor-
malizable term, B, is proportional to the expectation
value of the operator dual to V̂0: the quark number den-
sity. We now obtain the normalizations of A and B. The
action evaluated for the background Eq. (6) is given by
a boundary term:

S =
1

2g2
5

∫

d4x
1

z
V̂0∂zV̂0|z=0 =

1

2g2
5

AB

∫

d4x . (7)

At finite temperature and baryon number, the Euclidean
action is equal to the grand canonical potential. Using
Eq. (5), this implies that

AB =
24π2

Nc
nqµq (8)

with nq the quark number density and µq the quark
chemical potential. To fix A we separate U(Nf )L,R into
U(1)L,R and SU(Nf )L,R components and note that the
Chern-Simons term contains the coupling

Nc

24π2

3

8

∫

d4xdzεMNPQ(ÂL
0 TrFL

MNFL
PQ−ÂR

0 Tr FR
MNFR

PQ)

(9)

where the indices M, N, P, Q run over 1, 2, 3, z and the
trace is over SU(Nf ). Defining the SU(Nf)L,R instanton
numbers by

nL,R =
1

32π2

∫

d3xdzεMNPQ Tr FL,R
MNFL,R

PQ (10)

and taking ÂL,R
0 constant, this reduces to the coupling

Nc

2

∫

dx0
(

ÂL
0 nL − ÂR

0 nR

)

. (11)

Using the connection between instantons and Skyrmion
configurations of the pion field carrying non-zero baryon
number [12, 13, 14, 15, 16], we can interpret an instanton
with nL = −nR = Nb as a state with baryon number Nb.
Eq. (11) then fixes A = µb/Nc = µq with µq the quark
chemical potential; Eq. (8) fixes B = 24π2nq/Nc.

QUADRATIC ACTION

In vacuum, the spectrum of the theory consists of
towers of scalar, vector, pseudoscalar, and axial-vector
mesons given by mode-expanding the five-dimensional
fields along the holographic (z) direction, and integrat-
ing over z. In this section, we identify the spectrum
of excitations and their dispersion relations at non-zero
baryon density by expanding the action to quadratic or-
der around the background given by Eqns. (4),(6).

We focus on the π mesons and the isospin triplet vector
ρ and axial-vector a1 mesons, ignoring contributions from
heavier mesons, and from the scalar σ which arises from
fluctuations in the magnitude of X . Couplings similar to
those for the ρ − a1 mesons exist for the isoscalar ω and
f1 mesons. For simplicity, we omit these as well.

Pions arise as Nambu-Goldstone modes associated
with the breaking of U(Nf )L × U(Nf )R to U(Nf )V .
We write X(x, z) = X0(z) exp(i2πata) and expand
to quadratic order in πa. The four-dimensional pion
field is obtained by writing πa(x, z) = πa(x)ψπ(z).
Similarly, the ρa and a1 mesons appear by writing
V a

µ (x, z) = g5ρa
µ(x)ψρ(z), Aa

µ(x, z) = g5aa
µ(x)ψa(z). The

wave functions ψπ(z), ψρ(z), and ψa(z) are solutions of
the quadratic equations of motion for fields with four-
momentum q2 = m2 and with boundary conditions
ψ(0) = ∂zψ(zm) = 0. For details see [6, 7].

Making the above substitutions and expanding to
quadratic order yields the four-dimensional action

S =

∫

d4x

[

1

2
∂µπa∂µπa −

1

2
m2

ππaπa −
1

4
(ρa

µν)2

−
1

4
(aa

µν)2 +
1

2
m2

ρρ
a
µρaµ +

1

2
m2

aaa
µaaµ

+µεijk (ρa
i ∂ja

a
k + aa

i ∂jρ
a
k)

]

, (12)

As a result of  rho-a  mixing an instability appears for
large enough baryon chemical potential, leading to
vector meson condensation - breaks rotation invariance!

1



Electroweak Symmetry Breaking, Cosmology?

Holographic QCD does not yet do a great job 
predicting details of  the QCD phase diagram.

However, a first order technipion condensation 
transition may be relevant for extra-dimensional 
models of  EWSB.

Speculation: Can condensation of  CP-odd technipions 
be related to baryogenesis?



More of  the QCD Phase Diagram

AdS/CFT teaches us how to model finite temperature
(include a black hole in the extra dimension - Witten 
’98)

Perhaps the soft-wall model (Karch et al.) can shed some 
light on QCD at high temp and large chemical 
potentials.  However, holographic QCD does a poor 
job for most things at high energy (Strassler; Csaki, 
Reece, Terning).  



Comparison with Top-Down Models

Stringy AdS/QCD models at finite temperature and density have 
also been explored.
Karch,Kulaxizi,Parnachev; Erdmenger et al.; Evans et al.; Parnachev; 
Aharony et al.

It is difficult to include nonvanishing quark masses in these 
models, so the pion condensation transition typically occurs at 
zero temperature.

Violation of  the sound bound has also been noticed in
top-down models.

The chiral symmetry breaking and deconfinement transitions 
can be separated, even with vanishing chemical potential.



Summary

Chemical potentials are readily included in holographic models.

Holographic predictions for the phase diagram of  QCD have 
had mixed success so far.

Pions condense, but a puzzle remains in the matching to chiral 
perturbation theory.  Perhaps the pion has been misidentified as 
a mixture of  the physical pion with the Goldstone modes of  the 
Higgs doublet.


